146 research outputs found

    Seeing the Unseen Network: Inferring Hidden Social Ties from Respondent-Driven Sampling

    Full text link
    Learning about the social structure of hidden and hard-to-reach populations --- such as drug users and sex workers --- is a major goal of epidemiological and public health research on risk behaviors and disease prevention. Respondent-driven sampling (RDS) is a peer-referral process widely used by many health organizations, where research subjects recruit other subjects from their social network. In such surveys, researchers observe who recruited whom, along with the time of recruitment and the total number of acquaintances (network degree) of respondents. However, due to privacy concerns, the identities of acquaintances are not disclosed. In this work, we show how to reconstruct the underlying network structure through which the subjects are recruited. We formulate the dynamics of RDS as a continuous-time diffusion process over the underlying graph and derive the likelihood for the recruitment time series under an arbitrary recruitment time distribution. We develop an efficient stochastic optimization algorithm called RENDER (REspoNdent-Driven nEtwork Reconstruction) that finds the network that best explains the collected data. We support our analytical results through an exhaustive set of experiments on both synthetic and real data.Comment: A full version with technical proofs. Accepted by AAAI-1

    Sex, lies and self-reported counts: Bayesian mixture models for heaping in longitudinal count data via birth-death processes

    Full text link
    Surveys often ask respondents to report nonnegative counts, but respondents may misremember or round to a nearby multiple of 5 or 10. This phenomenon is called heaping, and the error inherent in heaped self-reported numbers can bias estimation. Heaped data may be collected cross-sectionally or longitudinally and there may be covariates that complicate the inferential task. Heaping is a well-known issue in many survey settings, and inference for heaped data is an important statistical problem. We propose a novel reporting distribution whose underlying parameters are readily interpretable as rates of misremembering and rounding. The process accommodates a variety of heaping grids and allows for quasi-heaping to values nearly but not equal to heaping multiples. We present a Bayesian hierarchical model for longitudinal samples with covariates to infer both the unobserved true distribution of counts and the parameters that control the heaping process. Finally, we apply our methods to longitudinal self-reported counts of sex partners in a study of high-risk behavior in HIV-positive youth.Comment: Published at http://dx.doi.org/10.1214/15-AOAS809 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore